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Thoughts on Healy’s Symplectification Algorithm

Waldo MacKay

A nice algorithm for tweaking an almost symplectic matrix into a symplectic matrix
has been given by Healy in his thesis[1] according to the literature. (I have not seen a copy
of his thesis, so I am not sure of his actual wording.) Before discussing the algorithm and
its limitations a lemma and theorem will first be proven.

Lemma: Given two square matrices S and W of the same rank with S2 = −I where I
is the identity matrix then

(I − WS)S(I + SW) = (I + WS)S(I− SW). (1)

Proof:
(I − WS)S(I + SW) = (S + W)(I + SW)

= S + W + S2W + WSW)

= S − W − S2W + WSW)

= (S− W)(I − SW)

= (I + WS)S(I− SW).

Theorem: A symplectic matrix M may be written in the form

M = (I + SW)(I − SW)−1, (2)

if and only if W is a symmetric matrix, and where S is the metric for the selected repre-
sentation of the symplectic group. This statement must be qualified with the requirement
that

|I − SW| 6= 0.

A discussion of the restrictions will be given at the end.

In accelerator physics we usually require S to be a block diagonal 2n×2n matrix with

(
0 −1
1 0

)

in the diagonal blocks. It is worth noting that S has the properties

ST = S−1 = −S.
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Proof:

Show that if W is symmetric, then M is symplectic:

MTSM = (I − WTST)−1(I + WTST)S(I + SW)(I − SW)−1

= (I + WS)−1(I − WS)S(I + SW)(I − SW)−1

= (I + WS)−1(I + WS)S(I − SW)(I − SW)−1

= S.

Therefore M is symplectic if W is symmetric.
Now let us assume that W is not symmetric, so it can be written as the sum of

symmetric and antisymmetric matrices:

W = P + Q

where P = PT and Q = −QT.

MTSM = S = (I − WTST)−1(I + WTST)S(I + SW)(I − SW)−1

= (I − WTST)−1(S + P − Q)(I + SP + SQ)(I − SW)−1

= (I − WTST)−1(S + P − Q − P − Q + WTSW)(I − SW)−1

= (I − WTST)−1[(S − P + Q + P + Q + WTSW) − 4Q](I − SW)−1

= (I − WTST)−1[(S − WT − S2W + WTSW) − 4Q](I − SW)−1

= (I − WTST)−1[(S − WT)(I − SW) − 4Q](I − SW)−1

= (I − WTST)−1[(I − WTST)S(I − SW) − 4Q](I − SW)−1

= S − 4(I − WTST)−1Q(I − SW)−1.

So assuming that the inverses in the last line exist then Q = 0. (Actually the inverse
(I − WTST)−1 must exist if its transpose (I − SW)−1 exists.) This proves the theorem.

Given the symplectic matrix M, form a new matrix

V = S(I − M)(I + M)−1 (3).

Then
V + VM = S − SM.

(S + V)M = S − V

M = (S + V)−1(S − V).

Taking the transpose gives

MT = (ST − VT)(ST + VT)−1,

2



and we can calculate the inverse via

M−1 = SMTST = S(ST − VT)(ST + VT)−1ST

= (I − SV)(I + SV)−1.

Inverting this yields

M = (I + SV)(I− SV)−1,

which is identical in form to Eq. 2.

The symplectification algorithm

The symplectification algorithm for an almost symplectic matrix M is to calculate V
by the above Eq. 3 (assuming that |I − M| 6= 0), then create a symmetric matrix

W =
V + VT

2
(4)

which then may be used to calculate a new matrix

M′ = (I + SW)(I − SW)−1,

assuming that |I − SW| 6= 0. This new matrix M′ must be symplectic by the previous
theorem, and it should be close to the original matrix M.

Problems with the method occur in constructing V when

|I + M| = 0.

This will happen when M has at least one eigenvalue equal to −1. If |I − M| 6= 0, then
we can define the new almost symmetric matrix by

V̂ = S(I + M)(I − M)−1 (3′)

with

Ŵ =
V̂ + V̂T

2
. (4′)

M′ = −(I + SŴ)(I − SŴ)−1. (2′)

Now we must have |I − SŴ| 6= 0, and |I − M| 6= 0.
If M has at least one eigenvalue equal to +1, and another equal to −1 then

|I − M| = |I + M| = 0.

and this method may not work.
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For an example of this, we must be considering a matrix for at least two planes with
at least four eigenvalues, since the symplectic matrix must have pairs of eigenvalues equal
to 1 and −1. The matrix

M =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




is symplectic and obviously has |I± M| = 0, so we cannot hope to construct a symmetric
V in this case.

Consider the perturbation of this matrix

M =




1 + δ 0 0 0
0 1 − δ 0 0
0 0 −1 0
0 0 0 −1


 ,

then

V̂ =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







2 + δ 0 0 0
0 2 − δ 0 0
0 0 0 0
0 0 0 0







−δ 0 0 0
0 δ 0 0
0 0 2 0
0 0 0 2




−1

=




0 δ − 2 0 0
δ + 2 0 0 0

0 0 0 0
0 0 0 0




1

2δ




−2 0 0 0
0 2 0 0
0 0 δ 0
0 0 0 δ




=
1

δ




0 δ − 2 0 0
−δ − 2 0 0 0

0 0 0 0
0 0 0 0


 .

While for nonzero values of δ this exists and is symmetric, the limit of V̂ blows up as δ
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goes to zero, however

Ŵ =
2

δ




0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0




SŴ =
2

δ




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0




M′ = −




δ+2

δ
0 0 0

0 δ−2

δ
0 0

0 0 1 0
0 0 0 1







δ−2

δ
0 0 0

0 δ+2

δ
0 0

0 0 1 0
0 0 0 1




−1

M′ =




2+δ
2−δ

0 0 0

0 2−δ
2+δ

0 0
0 0 −1 0
0 0 0 −1


 , and

lim
δ→0

M′ =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ,

as expected.
Consider a different perturbation of the matrix M:

M =




1 + δ 0 0 0
0 1 + δ 0 0
0 0 −1 0
0 0 0 −1


 ,

then

V̂ =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0







2 + δ 0 0 0
0 2 + δ 0 0
0 0 0 0
0 0 0 0







−δ 0 0 0
0 −δ 0 0
0 0 2 0
0 0 0 2




−1

=




0 −δ − 2 0 0
δ + 2 0 0 0

0 0 0 0
0 0 0 0


 1

2δ




−2 0 0 0
0 −2 0 0
0 0 δ 0
0 0 0 δ




=
1

δ




0 δ + 2 0 0
−δ − 2 0 0 0

0 0 0 0
0 0 0 0


 .
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Again for nonzero values of δ this exists, but is antisymmetric so that

Ŵ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

This leads to M′ = −I, so
lim
δ→0

M′ = I 6= M

which might be unexpected, and is quite different from the original unperturbed matrix.

Comment on an error in Ref. [3].

In Eq. 14.13 of Ref. [3], Iselin states that a symplectic matrix F = exp(SG) with a
symmetric matrix G can be written in the form

F = [I + tanh(SG/2)][I− tanh(SG/2)]−1 = (I + W)(I − W)−1, (I14.13)

where W is symmetric if and only if F is symplectic. This far right-hand side is incorrect,
and is probably a typo. He should have replaced W by SW in this equation. The middle
part of the equation is correct in most cases and basically comes from

ex =
cosh x

2
+ sinh x

2

cosh x
2
− sinh x

2

=
(
1 + tanh

x

2

) (
1 − tanh

x

2

)
−1

(5)

and the fact that Hamilton’s equations may be written in the form

dX

ds
= −SCX = SGX,

where

Cij = Cji =
∂2H

∂Xi∂Xj

.

Hamilton’s equations give the general form of the generators for this matrix representation
of the symplectic group Sp(2n, r) with the metric S. For real x, Eq. 5 is analytic since
| tanh(x/2)| < 1, however for complex x the hyperbolic tangent can take on values of 1,
so that Eq. 5 has poles. In the case where x = SG is a generator of a symplectic matrix,
then the modified equation becomes

eSG = [I + tanh(SG/2)][I− tanh(SG/2)]−1, (6)

and this factorization will not work when the matrix tanh(SG/2) has an eigenvalue equal
to 1. We should also note that since tanh(x) = − tanh(−x) is an odd function it can be
expanded as

tanh(x) =

∞∑

j=0

Ajx
2j+1,
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so that

tanh

(
SG

2

)
S =

∞∑

j=0

Aj

(SG)2j+1S

2
= S tanh

(
GS

2

)

=

∞∑

j=0

Aj

(SG)2j+1S

2
(−1)2j+2

=

[
tanh

(
SG

2

)
S

]T

=

[
S tanh

(
GS

2

)]T

From this it should be obvious that the last part of Eq. I14.13 should have been written
as

(I + SW)(I − SW)−1

for symmetric W.
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